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Abstract

Within the past two years, important advances have been made in modeling credit risk

at the portfolio level. Practitioners and policy makers have invested in implementing and

exploring a variety of new models individually. Less progress has been made, however,

with comparative analyses. Direct comparison often is not straightforward, because the

di�erent models may be presented within rather di�erent mathematical frameworks. This

paper o�ers a comparative anatomy of two especially in¯uential benchmarks for credit

risk models, the RiskMetrics Group's CreditMetrics and Credit Suisse Financial Prod-

uct's CreditRisk�. We show that, despite di�erences on the surface, the underlying

mathematical structures are similar. The structural parallels provide intuition for the

relationship between the two models and allow us to describe quite precisely where the

models di�er in functional form, distributional assumptions, and reliance on approxi-

mation formulae. We then design simulation exercises which evaluate the e�ect of each of

these di�erences individually. Ó 2000 Elsevier Science B.V. All rights reserved.

JEL classi®cation: G31; C15; G11
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1. Introduction

Over the past decade, ®nancial institutions have developed and implemented
a variety of sophisticated models of value-at-risk for market risk in trading
portfolios. These models have gained acceptance not only among senior bank
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managers, but also in amendments to the international bank regulatory
framework. Much more recently, important advances have been made in
modeling credit risk in lending portfolios. The new models are designed to
quantify credit risk on a portfolio basis, and thus have application in control of
risk concentration, evaluation of return on capital at the customer level, and
more active management of credit portfolios. Future generations of today's
models may one day become the foundation for measurement of regulatory
capital adequacy.

Two of the models, the RiskMetrics Group's CreditMetrics and Credit
Suisse Financial Product's CreditRisk�, have been released freely to the public
since 1997 and have quickly become in¯uential benchmarks. Practitioners and
policy makers have invested in implementing and exploring each of the models
individually, but have made less progress with comparative analyses. The two
models are intended to measure the same risks, but impose di�erent restrictions
and distributional assumptions, and suggest di�erent techniques for calibration
and solution. Thus, given the same portfolio of credit exposures, the two
models will, in general, yield di�ering evaluations of credit risk. Determining
which features of the models account for di�erences in output would allow us a
better understanding of the sensitivity of the models to the particular as-
sumptions they employ.

Direct comparison of the models has so far been limited, in large part, be-
cause the two models are presented within rather di�erent mathematical
frameworks. The CreditMetrics model is familiar to econometricians as an
ordered probit model. Credit events are driven by movements in underlying
unobserved latent variables. The latent variables are assumed to depend on
external ``risk factors''. Common dependence on the same risk factors gives rise
to correlations in credit events across obligors. The CreditRisk� model is based
instead on insurance industry models of event risk. Instead of a latent variable,
each obligor has a default probability. The default probabilities are not con-
stant over time, but rather increase or decrease in response to background
systemic factors. To the extent that two obligors are sensitive to the same set of
background factors, their default probabilities will move together. These co-
movements in probability give rise to correlations in defaults. CreditMetrics
and CreditRisk� may serve essentially the same function, but they appear to be
constructed quite di�erently.

This paper o�ers a comparative anatomy of CreditMetrics and CreditRisk�.
We show that, despite di�erences on the surface, the underlying probabilistic
structures are similar. Understanding the structural parallels helps to develop
intuition for the relationship between the two models. More importantly, it
allows us to describe quite precisely where the models di�er in functional form,
distributional assumptions, and reliance on approximation formulae. We then
design simulation exercises which evaluate the e�ect of each of these di�erences
individually.
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We proceed as follows. Section 2 presents a summary of the CreditRisk�

model and introduces a restricted version of CreditMetrics. The restrictions are
imposed to facilitate direct comparison of CreditMetrics and CreditRisk�.
While some of the richness of the full CreditMetrics implementation is sacri-
®ced, the essential mathematical characteristics of the model are preserved. Our
method of comparative anatomy is developed in Section 3. We show how the
restricted version of CreditMetrics can be run through the mathematical ma-
chinery of CreditRisk�, and vice versa.

Comparative simulations are developed in Section 4. Care is taken to con-
struct portfolios with quality and loan size distributions similar to real bank
portfolios, and to calibrate correlation parameters in the two models in an
empirically plausible and mutually consistent manner. The robustness of the
conclusions of Section 4 to our methods of portfolio construction and pa-
rameter calibration are explored in Section 5. An especially striking result from
the simulations is the sensitivity of CreditRisk� results to the shape of the
distribution of a systemic risk factor. The reasons for and consequences of this
sensitivity are explored in Section 6. We conclude with a summary of the main
results of the simulations.

2. Summary of the models

This section o�ers an introduction to CreditRisk� and CreditMetrics. The
discussion of CreditRisk� merely summarizes the derivation presented in
CSFP (1997, Appendix A). Our presentation of CreditMetrics sets forth a
restricted version of the full model described in the CreditMetrics Technical
Document (Gupton et al., 1997). Our choice of notation is intended to facilitate
comparison of the models, and may di�er considerably from what is used in the
original manuals.

2.1. Summary of CreditRisk�

CreditRisk� is a model of default risk. Each obligor has only two possible
end-of-period states, default and non-default. In the event of default, the lender
su�ers a loss of ®xed size, this is the lender's exposure to the obligor. The
distributional assumptions and functional forms imposed by CreditRisk� al-
low the distribution of total portfolio losses to be calculated in a convenient
analytic form.

Default correlations in CreditRisk� are assumed to be driven entirely by a
vector of K ``risk factors'' x � �x1; . . . ; xK�. Conditional on x, defaults of
individual obligors are assumed to be independently distributed Bernoulli
draws. The conditional probability pi�x� of drawing a default for obligor i is a
function of the rating grade f�i� of obligor i, the realization of risk factors x,
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and the vector of ``factor loadings'' �wi1; . . . ;wiK� which measure the sensi-
tivity of obligor i to each of the risk factors. CreditRisk� speci®es this
function as

pi�x� � �pf�i�
XK

k�1

xkwik

 !
; �1�

where �pf is the unconditional default probability for a grade f obligor, and the
x are positive-valued with mean one. The intuition behind this speci®cation is
that the risk factors x serve to ``scale up'' or ``scale down'' the unconditional �pf.
A high draw of xk (over one) increases the probability of default for each
obligor in proportion to the obligor's weight wik on that risk factor, a low draw
of xk (under one) scales down all default probabilities. The weights wik are
required to sum to one for each obligor, which guarantees that E�pi�x�� � �pf�i�.

Rather than calculating the distribution of defaults directly, CreditRisk�

calculates the probability generating function (``pgf'') for defaults. The pgf
Fj�z� of a discrete random variable j is a function of an auxilliary variable z
such that the probability that j � n is given by the coe�cient on zn in the
polynomial expansion of Fj�z�. The pgf has two especially useful properties: 1

· If j1 and j2 are independent random variables, then the pgf of the sum
j1 � j2 is equal to the product of the two pgfs.

· If Fj�zjx� is the pgf of j conditional on x, and x has distribution function
H�x�, then the unconditional pgf is simply Fj�z� �

R
x Fj�zjx� dH�x�.

We ®rst derive the conditional pgf F�zjx� for the total number of defaults in
the portfolio given realization x of the risk factors. For a single obligor i, this is
the Bernoulli�pi�x�� pgf:

Fi�zjx� � �1ÿ pi�x� � pi�x�z� � �1� pi�x��zÿ 1��: �2�
Using the approximation formula log�1� y� � y for y � 0, we can write

Fi�zjx� � exp� log�1� pi�x��zÿ 1��� � exp�pi�x��zÿ 1��: �3�
We refer to this step as the ``Poisson approximation'' because the expression on
the right-hand side is the pgf for a random variable distributed Poisson�pi�x��.
The intuition is that, as long as pi�x� is small, we can ignore the constraint that
a single obligor can default only once, and represent its default event as a
Poisson random variable rather than as a Bernoulli. The exponential form of
the Poisson pgf is essential to the computational facility of the model.

Conditional on x, default events are independent across obligors, so the pgf
of the sum of obligor defaults is the product of the individual pgfs:

1 See Johnson and Kotz (1969, Section 2.2) for further discussion of probability generating

functions.
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F�zjx� �
Y

i

Fi�zjx� �
Y

i

exp�pi�x��zÿ 1�� � exp�l�x��zÿ 1��; �4�

where l�x� �Pi pi�x�:
To get the unconditional probability generating function F�z�, we integrate

out the x. The risk factors in CreditRisk� are assumed to be independent
gamma-distributed random variables with mean one and variance r2

k ;
k � 1; . . . ;K: 2 See Appendix A on the properties and parameterization of the
gamma distribution. It is straightforward to show that

F�z� �
YK
k�1

1ÿ dk

1ÿ dkz

� �1=r2
k

where dk � r2
klk

1� r2
klk

and lk �
X

i

wik �pf�i�:

�5�

The form of this pgf shows that the total number of defaults in the portfolio is
a sum of K independent negative binomial variables.

The ®nal step in CreditRisk� is to obtain the probability generating function
G�z� for losses. Assume loss given default is a constant fraction k of loan size.
Let Li denote the loan size for obligor i. In order to retain the computational
advantages of the discrete model, we need to express the loss exposure amounts
kLi as integer multiples of a ®xed unit of loss (e.g., one million dollars). The
base unit of loss is denoted m0 and its integer multiples are called ``standardized
exposure'' levels. The standardized exposure for obligor i, denoted m�i�, is equal
to kLi=m0 rounded to the nearest integer.

Let Gi denote the probability generating function for losses on obligor i. The
probability of a loss of m�i� units on a portfolio consisting only of obligor i must
equal the probability that i defaults, so Gi�zjx� �Fi�zm�i�jx�. We use the con-
ditional independence of the defaults to obtain the conditional pgf for losses in
the entire portfolio as

G�zjx� �
Y

i

Gi�zjx� � exp
XK

k�1

xk

X
i

�pf�i�wik�zm�i�
 

ÿ 1�
!
: �6�

As before, we integrate out the x and rearrange to arrive at

G�z� �
YK
k�1

1ÿ dk

1ÿ dkPk�z�
� �1=r2

k

where Pk�z� � 1

lk

X
i

wik �pf�i�z
m�i� �7�

and dk and lk are as de®ned in Eq. (5).

2 This is a variant on the presentation in the CreditRisk� manual, in which xk has mean lk and

variance r2
k , and the conditional probabilities are given by pi�x� � �pf�i��

P
wik�xk=lk��. In our

presentation, the constants 1=lk are absorbed into the normalized xk without any loss of generality.
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The unconditional probability that there will be n units of m0 loss in the total
portfolio is given by the coe�cient on zn in the Taylor series expansion of G�z�.
The CreditRisk� manual (Section A.10) provides the recurrence relation used
to calculate these coe�cients.

2.2. A restricted version of CreditMetrics

The CreditMetrics model for credit events is familiar to economists as an
ordered probit. Associated with obligor i is an unobserved latent random
variable yi. The state of obligor i at the risk-horizon depends on the location of
yi relative to a set of ``cut-o�'' values. In the full version of the model, the cut-
o�s divide the real number line into ``bins'' for each end-of-period rating grade.
CreditMetrics thereby captures not only defaults, but migrations across non-
default grades as well. Given a set of forward credit spreads for each grade,
CreditMetrics can then estimate a distribution over the change in mark-to-
market value attributable to portfolio credit risk.

In this section, we present a restricted version of CreditMetrics. To allow
more direct comparison with CreditRisk�, we restrict the set of outcomes to
two states, default and non-default. In the event of default, we assume loss is a
®xed fraction k of the face value. This represents a second signi®cant simpli-
®cation of the full CreditMetrics implementation, which allows idiosyncratic
risk in recoveries. 3 In the non-default state, the loan retains its book value.
Thus, our restricted version of CreditMetrics is a model of book value losses,
rather than of changes in market value. In the discussion below, the restricted
CreditMetrics will be designated as ``CM2S'' (``CreditMetrics two-state'')
whenever distinction from the full CreditMetrics model needs emphasis.

The latent variables yi are taken to be linear functions of risk factors x and
idiosyncratic e�ects �i:

yi � xwi � gi�i: �8�
The vector of factor loadings wi determines the relative sensitivity of obligor i to
the risk factors, and the weight gi determines the relative importance of id-
iosyncratic risk for the obligor. The x are assumed to be normally distributed
with mean zero and variance±covariance matrix X. 4 Without loss of generality,
assume there are ones on the diagonal of X, so the marginal distributions are all

3 The full CreditMetrics also accommodates more complex asset types, including loan

commitments and derivatives contracts. See the CreditMetrics Technical Document, Chapter 4,

and Finger (1998). These features are not addressed in this paper.
4 In the CreditMetrics Technical Document, it is recommended that the x be taken to be stock

market indexes, because the ready availability of historical data on stock indexes simpli®es

calibration of the covariance matrix X and the weights wi. The mathematical framework of the

model, however, imposes no speci®c identity on the x.
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N(0, 1). The �i are assumed to be iid N(0, 1). Again without loss of generality, it
is imposed that yi has variance 1 (i.e., that w0iXwi � g2

i � 1�. Associated with
each start-of-period rating grade f is a cut-o� value Cf . When the latent variable
yi falls under the cut-o� Cf�i�, the obligor defaults. That is, default occurs if

xwi � gi�i < Cf�i�: �9�

The Cf values are set so that the unconditional default probability for a grade f
obligor is �pf, i.e., so that �pf � U�Cf�, where U is the standard normal cdf and
the �pf are de®ned as in Section 2.1.

The model is estimated by Monte Carlo simulation. To obtain a single trial
for the portfolio, we ®rst draw a single vector x as a multivariate N(0, X) and a
set of iid N(0, 1) idiosyncratic �. We form the latent yi for each obligor, which
are compared against the cut-o� values Cf�i� to determine default status Di (one
for default, zero otherwise). Portfolio loss for this trial is given by

P
i DikLi. To

estimate a distribution of portfolio outcomes, we repeat this process many
times. The portfolio losses for each trial are sorted to form a cumulative dis-
tribution for loss. For example, if the portfolio is simulated 100,000 times, then
the estimated 99.5th percentile of the loss distribution is given by the 99,500th
element of the sorted loss outcomes.

3. Mapping between the models

Presentation of the restricted version of CreditMetrics and the use of a
similar notation in outlining the models both serve to emphasize the funda-
mental similarities between CreditMetrics and CreditRisk�. Nonetheless, there
remain substantial di�erences in the mathematical methods used in each, which
tend to obscure comparison of the models. In the ®rst two parts of this section,
we map each model into the mathematical framework of the other. We con-
clude this section with a comparative analysis in which fundamental di�erences
between the models in functional form and distributional assumptions are
distinguished from di�erences in technique for calibration and solution.

3.1. Mapping CreditMetrics to the CreditRisk� framework

To map the restricted CM2S model into the CreditRisk� framework, we
need to derive the implied conditional default probability function pi�x� used in
Eq. (3). 5 Conditional on x, rearrangement of Eq. (9) shows that obligor i

5 Koyluoglu and Hickman (1998) present the conditional probability form for CreditMetrics as

well, and note its utility in mapping CreditMetrics to the CreditRisk� framework.
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defaults if and only if �i < ��Cf�i� ÿ xwi�=gi. Because the �i are standard normal
variates, default occurs with conditional probability

pi�x� � U��Cf�i� ÿ xwi�=gi�: �10�

The CreditRisk� methodology can now be applied in a straightforward
manner. Conditional on x, default events are independent across obligors.
Therefore, the conditional probability generating function for defaults, F�zjx�,
takes on exactly the same Poisson approximation form as in Eq. (4). To get the
unconditional probability generating function F�z�, we integrate out the x:

F�z� �
Z 1

ÿ1
F�zjx�/X�x� dx; �11�

where /X is the multivariate N(0, X) pdf. The unconditional probability that
exactly n defaults will occur in the portfolio is given by the coe�cient on zn in
the Taylor series expansion of F�z�:

F�z� �
Z 1

ÿ1

X1
n�0

exp�ÿl�x�� l�x�
nzn

n!
/X�x� dx

�
X1
n�0

1

n!

Z 1

ÿ1
exp�

�
ÿ l�x��l�x�n/X�x� dx

�
zn;

�12�

where l�x� �Pi pi�x�. These K-dimensional integrals are analytically intrac-
table (even when the number of systemic factors K� 1), and in practice would
be solved using Monte Carlo techniques. 6

The remaining steps in CreditRisk� would follow similarly. That is, one
would round loss exposures to integer multiples of a base unit m0, apply the rule
Gi�zjx� �Fi�zm�i�jx� and multiply pgfs across obligors to get G�zjx�. To get the
unconditional pgf of losses, we integrate out the x as in Eq. (12). The result
would be computationally unwieldy, but application of the method is con-
ceptually straightforward.

3.2. Mapping CreditRisk� to the CreditMetrics framework

Translating in the opposite direction is equally straightforward. To go from
CreditRisk� into the CM2S framework, we assign to obligor i a latent variable
yi de®ned by

6 Note that the integrals di�er only in n, so a single set of Monte Carlo draws for x allows

successive solution of the integrals via a simple recurrence relation. This technique is fast relative to

standard Gaussian quadrature.
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yi �
XK

k�1

xkwik

 !ÿ1

�i: �13�

The xk and wik are the same gamma-distributed risk factors and factor
loadings used in CreditRisk�. The idiosyncratic risk factors �i are indepen-
dently and identically distributed Exponential with parameter 1. Obligor i
defaults if and only if yi < �pf�i�. Observe that the conditional probability of
default is given by

Pr�yi < �pf�i�jx� � Pr �i

 
< �pf�i�

XK

k�1

xkwikjx
!

� 1ÿ exp

 
ÿ �pf�i�

XK

k�1

xkwik

!

� �pf�i�
XK

k�1

xkwik � pi�x�;

�14�

where the second line follows using the cdf for the exponential distribution, and
the last line relies on the same approximation formula as Eq. (3). The un-
conditional probability of default is simply �pf�i�, as required.

In the ordinary CreditMetrics speci®cation, the latent variable is a linear
sum of normal random variables. When CreditRisk� is mapped to the Cred-
itMetrics framework, the latent variable takes a multiplicative form, but the
idea is the same. 7 In CreditMetrics, the cut-o� values Cf are determined as
functions of the associated unconditional default probabilities �pf. Here, the
cut-o� values are simply the �pf. Other than these di�erences in form, the
process is identical. A single portfolio simulation trial would consist of a single
random draw of sector risk factors and a single vector of random draws of
idiosyncratic risk factors. From these, the obligors' latent variables are cal-
culated, and these in turn determine default events. 8

3.3. Essential and inessential di�erences between the models

CreditMetrics and CreditRisk� di�er in distributional assumptions and
functional forms, solution techniques, suggested methods for calibration, and
mathematical language. As the preceding analysis makes clear, only the dif-
ferences in distributional assumptions and functional forms are fundamental.

7 One could quasi-linearize Eq. (13) by taking logs, but little would be gained because the log of

the weighted sum of x variables would not simplify.
8 In practice, it would be faster and more accurate to simulate outcomes as independent

Bernoulli(pi�x�) draws, which is the method used in Section 5. The latent variable method is

presented only to emphasize the structural similarities between the models.
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Each model can be mapped into the mathematical language of the other, which
demonstrates that the di�erence between the latent variable representation of
CreditMetrics and the covarying default probabilities of CreditRisk� is one of
presentation and not substance. Similarly, methods for parameter calibration
suggested in model technical documents are helpful to users, but not in any
way intrinsic to the models.

By contrast, distributional assumptions and functional forms are model
primitives. In each model, the choice of distribution for the systemic risk
factors x and the functional form for the conditional default probabilities
pi�x� together give shape to the joint distribution over obligor defaults in the
portfolio. The CreditMetrics speci®cations of normally distributed x and of
Eq. (10) for the pi�x� may be somewhat arbitrary, but nonetheless strongly
in¯uence the results. 9 One could substitute any member of the symmetric
stable class of distributions (of which the normal distribution is only a
special case) without requiring signi®cant change to the CreditMetrics
methods of model calibration and simulation. Even if parameters were re-
calibrated to yield the same mean and variance of portfolio loss, the overall
shape of the loss distribution would di�er, and therefore the tail percentile
values would change as well. The choice of the gamma distribution and the
function form for conditional default probabilities given by Eq. (1) are
similarly characteristic of CreditRisk�. Indeed, in Section 6 we will show
how small deviations from the gamma speci®cation lead to signi®cant dif-
ferences in tail percentile values in a generalized CreditRisk� framework.

Remaining di�erences between the two models are attributable to di�erences
in solution method. The Monte Carlo method of CreditMetrics is ¯exible but
computationally intensive. CreditRisk� o�ers the e�ciency of a closed-form
solution, but at the expense of additional restrictions or approximations. In
particular,
· CreditMetrics allows naturally for multi-state outcomes and for uncertainty

in recoveries, whereas the closed-form CreditRisk� is a two-state model with
®xed recovery rates. 10

9 Recall that Eq. (10) follows from the speci®cation in Eq. (8) of latent variable yi and the

assumption of normally distribution idiosyncratic �i. Therefore, this discussion incorporates those

elements of the CreditMetrics model.
10 In principle, both restrictions in CreditRisk� can be relaxed without resorting to a Monte

Carlo methodology. It is feasible to introduce idiosyncratic risk in recoveries to CreditRisk�, but

probably at the expense of the computational facility of the model. CreditRisk� also can be

extended to, say, a three-state model in which the third state represents a severe downgrade (short

of default). However, CreditRisk� cannot capture the exclusive nature of the outcomes (i.e., one

cannot impose the mutual exclusivity of a severe downgrade and default). For this reason, as well as

the Poisson approximation, the third state would need to represent a low probability event. Thus, it

would be impractical to model ordinary rating migrations in CreditRisk�.
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· CreditRisk� imposes a ``Poisson approximation'' on the conditional distri-
bution of defaults.

· CreditRisk� rounds each obligor's loan loss exposure to the nearest element
in a ®nite set of values.

Using the techniques of Section 3.2, it is straightforward to construct a Monte
Carlo version of CreditRisk� which avoids Poisson and loss exposure ap-
proximations and allows recovery risk. It is less straightforward but certainly
possible to create a Monte Carlo multi-state generalization of CreditRisk�.
Because computational convenience may be a signi®cant advantage of Cred-
itRisk� for some users, the e�ect of the Poisson and loss exposure approxi-
mations on the accuracy of CreditRisk� results will be examined in Sections 5
and 6. However, the e�ect of multi-state outcomes and recovery uncertainty on
the distribution of credit loss will be left for future study. Therefore, our
simulations will compare CreditRisk� to only the restricted CM2S version of
CreditMetrics.

It is worth noting that there is no real loss of generality in the assumption of
independence across sector risk factors in CreditRisk�. In each model, the
vector of factor loadings (w) is free, up to a scaling restriction. In Credit-
Metrics, the sector risk factors x could be orthogonalized and the correlations
incorporated into the w. 11 However, the need to impose orthogonality in
CreditRisk� does imply that greater care must be given to identifying and
calibrating sectoral risks in that model.

4. Calibration and main simulation results

The remaining sections of this paper study the two models using com-
parative simulations. The primary goal is to develop reliable intuition for
how the two models will di�er when applied to real world portfolios. In
pursuit of this goal, we also will determine the parameters or portfolio
characteristics to which each model is most sensitive. Emphasis is placed on
relevance and robustness. By relevance, we mean that the simulated port-
folios and calibrated parameters ought to resemble their real world coun-
terparts closely enough for conclusions to be transferable. By robustness, we
mean that the conclusions ought to be qualitatively valid over an empirically
relevant range of portfolios.

This section will present our main simulations. First, in Section 4.1, we
construct a set of ``test deck'' portfolios. All assets are assumed to be ordinary
term loans. The size distribution of loans and their distribution across S&P
rating grades are calibrated using data from two large samples of midsized and
large corporate loans. Second, in Section 4.2, default probabilities and corre-

11 In this case, the original weights w would be replaced by X1=2w:
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lation structures in each model are calibrated using historical default data from
the S&P ratings universe. We calibrate each model to a one year risk-horizon.
The main simulation results are presented in Section 4.3.

4.1. Portfolio construction

Construction of our simulated loan portfolios requires choices along three
dimensions. The ®rst is credit quality, i.e., the portion of total dollar out-
standings in each rating grade. The second is obligor count, i.e., the total
number of obligors in the portfolio. The third is concentration, i.e., the dis-
tribution of dollar outstandings within a rating grade across the obligors within
that grade. Note that the total portfolio dollar outstandings is immaterial,
because losses will be calculated as a percentage of total outstandings.

The range of plausible credit quality is represented by four credit quality
distributions, which are labelled ``High'', ``Average'', ``Low'' and ``Very Low''.
The ®rst three distributions are constructed using data from internal Federal
Reserve Board surveys of large banking organizations. 12 The ``Average''
distribution is the average distribution across the surveyed banks of total
outstandings in each S&P grade. The ``High'' and ``Low'' distributions are
drawn from the higher and lower quality distributions found among the banks
in the sample. The ``Very Low'' distribution is not found in the Federal Reserve
sample, but is intended to represent a very weak large bank loan portfolio
during a recession. Speculative grade (BB and below) loans account for half of
outstandings in the ``Average'' portfolio, and 25%, 78% and 83% in the
``High'', ``Low'', ``Very Low'' quality portfolios, respectively. The distributions
are depicted in Fig. 1.

Realistic calibration of obligor count is likely to depend not only on the size
of the hypothetical bank, but also on the bank's business focus. A very large
bank with a strong middle-market business might have tens of thousands of
rated obligors in its commercial portfolio. A bank of the same size specializing
in the large corporate market might have only a few thousand. For the ``base
case'' calibration, we set N� 5000. To establish robustness of the conclusions
to the choice of N, we model portfolios of 1000 and 10,000 obligors as well. In
all simulations, we assume each obligor is associated with only one loan in the
portfolio.

Portfolio concentration is calibrated in two stages. First, we divide the total
number of obligors N across the rating grades. Second, for each rating grade,
we determine how the total exposure within the grade is distributed across the
number of obligors in the grade. In both stages, distributions are calibrated

12 Each bank provided the amount outstanding, by rating grade, in its commericial loan book.
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using the Society of Actuaries (1996, hereafter cited as ``SoA'') sample of
midsized and large private placement loans (see also Carey, 1998).

Let qf be the dollar volume of exposure to rating grade f as a share of total
portfolio exposure (determined by the chosen ``credit quality distribution''),
and let vf be the mean book value of loans in rating grade f in the SoA data.
We determine nf, the number of obligors in rating grade f, by imposing

qf � nfvf

.X
g

ngvg �15�

for all f. That is, the nf are chosen so that, in a portfolio with mean loan sizes in
each grade matching the SoA mean sizes, the exposure share of that grade
matches the desired share qf. The equations of form (15) are easily transformed
into a set of six linearly independent equations and seven unknown nf values
(using the S&P eight grade scale). Given the restriction

P
nf � N , the vector n

is uniquely determined. 13 Table 1 shows the values of the vector n associated
with each credit quality distribution when N� 5000.

The ®nal step is to distribute the qf share of total loan exposure across the nf

obligors in each grade. For our ``base case'' calibration, the distribution within
grade f is chosen to match (up to a scaling factor) the distribution for grade f
exposures in the SoA data. The SoA loans in grade f are sorted from smallest
to largest, and used to form a cumulative distribution Hf. The size of the jth
exposure, j � 1; . . . ; nf, is set to the �jÿ 1=2�=nf percentile of Hf.

14 Finally, the

Fig. 1. Credit quality distributions.

13 After solving the system of linear equations, the values of nf are rounded to whole numbers.
14 For example, say nf � 200 and there are 6143 loans in the grade f SoA sample. To set the size

of, say, the seventh (j� 7) simulated loan, we calculate the index �jÿ 1=2�6143=nf � 199:65. The

loan size is then formed as an interpolated value between the 199th and 200th loans in the SoA

vector.
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nf loan sizes are normalized to sum to qf. This method ensures that the shape of
the distribution of loan sizes will not be sensitive to the choice of nf (unless nf is
very small). As an alternative to the base case, we also model a portfolio in
which all loans within a rating grade are equal-sized, i.e., each loan in grade f is
of size qf=nf.

In all simulations below, it is assumed that loss given default is a ®xed
proportion k � 0:3 of book value, which is consistent with historical loss given
default experience for senior unsecured bank loans. 15 Percentile values on the
simulated loss distributions are directly proportional to k. Holding ®xed all
other model parameters and the permitted probability of bank insolvency, the
required capital given a loss rate of, say, k � 0:45 would simply be 1.5 times the
required capital given k � 0:3.

It should be emphasized that the SoA data are used to impose shape, but not
scale, on the distributions of loan sizes. The ratio of the mean loan size in grade
f1 to the mean loan size in grade f2 is determined by the corresponding ratio in
the SoA sample. Within each grade, SoA data determine the ratio of any two
percentile values of loan size (e.g., the 75th percentile to the median). However,
measures of portfolio concentration (e.g., the ratio of the sum of the largest j
loans to the total portfolio value) depend strongly on the choice of N, and thus
not only on SoA sample.

Finally, CreditRisk� requires a discretization of the distribution of expo-
sures, i.e., the selection of the base unit of loss m0. In the main set of simula-
tions, we will set m0 to k times the ®fth percentile value of the distribution of
loan sizes. In Section 5, it will be shown that simulation results are quite robust
to the choice of m0.

Table 1

Number of obligors in each rating grade

Portfolio credit quality

High Average Low Very Low

AAA 191 146 50 25

AA 295 250 77 51

A 1463 669 185 158

BBB 1896 1558 827 660

BB 954 1622 1903 1780

B 136 556 1618 1851

CCC 65 199 340 475

Total 5000 5000 5000 5000

15 See the CreditMetrics Technical Document, Section 7.1.2.
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4.2. Default probabilites and correlations

In any model of portfolio credit risk, the structure of default rate correla-
tions is an important determinant of the distribution of losses. Special attention
must therefore be given to mutually consistent calibration of parameters which
determine default correlations. In the exercises below, we calibrate Credit-
Metrics and CreditRisk� to yield the same unconditional expected default rate
for an obligor of a given rating grade, and the same default correlation between
any two obligors within a single rating grade. 16

For simplicity, we assume a single systemic risk factor x. 17 Within each
rating grade, obligors are statistically identical (except for loan size). That is,
every obligor of grade f has unconditional default probability �pf and has the
same weight wf on the systemic risk factor. (The value of wf will, of course,
depend on the choice of model.) The �p values are set to the long-term average
annual default probabilities given in Table 6.9 of the CreditMetrics Technical
Document, and are shown below in the ®rst column of Table 2. For a portfolio
of loans, this is likely to be a relatively conservative calibration of mean annual
default probabilities. 18

The weights wf are calibrated for each model by working backwards from
the historical volatility of annual default rates in each rating grade. First, using
data in Brand and Bahar (1998, Table 12) on historical default experience in
each grade, we estimate the variance Vf of the conditional default rate pf�x�.
The estimation method and results are described in Appendix B. For calibra-
tion purposes, the default rate volatilities are most conveniently expressed as
normalized standard deviations

�����
Vf

p
=�pf. The values assumed in the simulations

are shown in the second column of Table 2, and the implied default correla-
tions qf for any two obligors in the same rating grade are shown in the third
column. To con®rm the qualitative robustness of the results, additional sim-
ulations will be presented in Section 5 in which the assumed normalized vol-
atilities are twice the values used here.

The second step in determining the wf is model-dependent. To calibrate the
CreditMetrics weights, we use Proposition 1:

Proposition 1. In the CreditMetrics model,

Vf � Var�pf�x�� � U�Cf;Cf;w2
f� ÿ �p2

f ; �16�

16 Koyluoglu and Hickman (1998) also use these two moments to harmonize calibration of

somewhat more restrictive versions of the two models.
17 This is in the same spirit as the ``Z-risk'' approach of Belkin et al. (1998).
18 Carey (1998) observes that default rates on speculative grade private placement loans tend to

be lower than on publicly held bonds of the same senior unsecured rating, and attributes this

superior performance to closer monitoring.
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where U�z1; z2; q� is the bivariate normal cdf for Z � �Z1Z2�0 such that

E�Z� � 0
0

� �
; Var�Z� � 1 q

q 1

� �
: �17�

The proof is given in Appendix C. Given the cut-o� values Cf (which are
functions of the �pf) and normalized volatilities

����
V
p

f=�pf, non-negative wf are
uniquely determined by the non-linear Eq. (16). The solutions are shown in the
fourth column of Table 2.

In CreditRisk�, a model with a single systemic risk factor and obligor-
speci®c idiosyncratic risk can be parameterized ¯exibly as a two risk factor
model in which the ®rst risk factor has zero volatility and thus always equals
one. 19 Let wf be the weights on x2 (which are constant across obligors within a
grade but allowed to vary across grades), so the weights on x1 are 1ÿ wf. To
simplify notation, we set the ®rst risk factor �x1� identically equal to one, and
denote the second risk factor �x2� as x and the standard deviation r2 of x2 as r.
Under this speci®cation, the variance of the default probability in CreditRisk�

for a grade f obligor is

Vf � Var��pf�1ÿ wf � wfx�� � ��pfwfr�2 �18�
so the normalized volatility

����
V
p

f=�pf equals wfr.
Given r, the weights wf are uniquely determined. However, there is no

obvious additional information to bring to the choice of r. This might appear

Table 2

Default rate volatility and factor weightsa

Historical experience Factor loadings

�p
���������
V =�p

p
q CM2S CR� CR� CR�

r 1.0 1.5 4.0

AAA 0.01 1.4 0.0002 0.272 1.400 0.933 0.350

AA 0.02 1.4 0.0004 0.285 1.400 0.933 0.350

A 0.06 1.2 0.0009 0.279 1.200 0.800 0.300

BBB 0.18 0.4 0.0003 0.121 0.400 0.267 0.100

BB 1.06 1.1 0.0130 0.354 1.100 0.733 0.275

B 4.94 0.55 0.0157 0.255 0.550 0.367 0.138

CCC 19.14 0.4 0.0379 0.277 0.400 0.267 0.100

a Unconditional annual default probabilities �p taken from the CreditMetrics Technical Document,

Table 6.9, and are expressed here in percentage points. Historical experience for default rate vol-

atility derived from Brand and Bahar (1998, Table 12), as described below in Appendix B.

19 See the CreditRisk� manual, Section A12.3. The ®rst factor is referred to as a ``speci®c

factor''. Because it represents diversi®able risk, it contributes no volatility to a well diversi®ed

portfolio.
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to make little or no di�erence, because the volatility of the default probabilities
depends only on the product wfr. However, because r controls the shape (and
not merely the scale) of the distribution of x, higher moments of the distri-
bution of pi�x� depend directly on r and not only on the product (wfr).
Consequently, tail probabilities for portfolio loss are quite sensitive to the
choice of r. To illustrate this sensitivity, simulation results will be presented for
three values of r (1.0, 1.5, and 4.0). See the last three columns of Table 2 for the
values of wf corresponding to each of these r (with wfr held constant) and the
grade-speci®c normalized volatilities.

In the CreditRisk� manual, Section A7.3, it is suggested that r is roughly
one. This estimate is based on a single-sector calibration of the model, which
is equivalent to setting all the wf to one. The exposure-weighted average of
values in the second column of Table 2 would then be a reasonable cali-
bration of r. For most portfolios, this would yield r � 1, as suggested. Our
speci®cation is strictly more general than the single-sector approach, because
it allows the relative importance of systemic risk to vary across rating grades,
and also is more directly comparable to our calibrated correlation structure
for CreditMetrics. Note that the di�culty of calibrating r in this more
general speci®cation should not be interpreted as a disadvantage to Credit-
Risk� relative to CreditMetrics, because CreditMetrics avoids this calibration
issue by ®at. In assuming the normal distribution for the systemic risk factor,
CreditMetrics is indeed imposing very strong restrictions on the shape of the
distribution tail.

When r � 1 is used in our calibration of CreditRisk�, a problem arises in
that some of the factor loadings exceed one. Such values imply negative
weights on the speci®c factors, which violate both intuition and the formal
assumptions of the model. However, CreditRisk� can tolerate negative weights
so long as all coe�cients in the polynomial expansion of the portfolio loss
probability generating function remain positive 20. For the weights in the r � 1
column, we have con®rmed numerically that our simulations always produce
valid loss distributions. 21

To users of CreditRisk�, this ``top-down'' approach to calibration should
seem entirely natural. Users of CreditMetrics, however, may ®nd it some what

20 Conditional on small realizations of x, an obligor with negative weight on the speci®c factor

can have a negative default probability. However, so long as such obligors are relatively few and

their negative weights relatively small in magnitude, the portfolio loss distribution can still be well-

behaved. There may be some similarity to the problem of generating default probabilities over one
conditional on large realizations of x, which need not cause any problem at the portfolio level, so

long as the portfolio does not have too many low-rated obligors with high loading on the systemic

risk factor.
21 The weights in the r � 1:5 and r � 4 columns of Table 2 are all bounded in (0, 1) so the issue

does not arise.
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alien. The design of CreditMetrics facilitates a detailed speci®cation of risk
factors (e.g., to represent industry- and country-speci®c risks), and thereby
encourages a ``bottom-up'' style of calibration. From a mathematical point-
of-view, top-down calibration of CreditMetrics is equally valid, and is con-
venient for purposes of comparison with CreditRisk�. As an empirical
matter, a top-down approach ought to work as well as a bottom-up approach
on a broadly diversi®ed bond portfolio, because the top-down within-grade
default correlation should roughly equal the average of the bottom-up
default correlations among obligors within that grade. The bottom-up
approach, however, is better suited to portfolios with industry or geographic
concentrations.

Another limitation of our method of calibration is that it makes no use of
historical default correlations between obligors of di�erent grades. Cross-grade
default correlations are determined as artifacts of the models' functional forms
for pf�x�, the assumption of a single systemic risk factor, and the chosen factor
loadings. In general, our calibrations for CreditMetrics and CreditRisk� yield
quite similar cross-grade default correlations, but there are discrepancies for
some cells. For example, the default correlation between a BB issuer and a
CCC issuer is 0.0204 in CreditMetrics and 0.0222 in CreditRisk�. Thus, while
our method equalizes variance of loss across the two models given homoge-
neous (i.e., single grade) portfolios, there will be slight di�erences given mixed-
grade portfolios.

4.3. Main simulation results

Results for the main set of simulations are displayed in Table 3. 22 Each
quadrant of the table shows summary statistics and selected percentile values
for CreditMetrics and CreditRisk� portfolio loss distributions for a portfolio
of a given credit quality distribution. The summary statistics are the mean,
standard deviation, index of skewness and index of kurtosis. The latter two are
de®ned for a random variable y by

Skewness�y� � E��y ÿ E�y��3�
Var�y�3=2

; Kurtosis�y� � E��y ÿ E�y��4�
Var�y�2 :

Skewness is a measure of the asymmetry of a distribution, and kurtosis is a
measure of the relative thickness of the tails of the distribution. For portfolio

22 In these simulations, there are N� 5000 loans in the portfolio, grade-speci®c loan size

distributions are taken from the SoA sample, average severity of loss is held constant at 30%, and

the weights wf and CreditRisk� parameter r are taken from Table 2. CreditMetrics distributions

are formed using 200,000 portfolio trials.
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credit risk models, high kurtosis indicates a relatively high probability of very
large credit losses. These summary statistics are calculated analytically for the
CreditRisk� model using the results of Gordy (1999), and are approximated
for CreditMetrics from the Monte Carlo loss distribution.

The percentile values presented in the table are the loss levels associated
with the 50% (median), 75%, 95%, 99%, 99.5% and 99.97% points on the
cumulative distribution of portfolio losses. In many discussions of credit risk
modeling, the 99th and sometimes the 95th percentiles of the distribution are
taken as points of special interest. The 99.5th and 99.97th percentiles may
appear to be extreme tail values, but are in fact of greater practical interest
than the 99th percentile. To merit an AA rating, an institution must have a
probability of default over a one year horizon of roughly three basis points
(0.03%). 23 Such an institution therefore ought to hold capital (or reserves)
against credit loss equal to the 99.97th percentile value. Capitalization su�-
cient to absorb up to the 99.5th percentile value of losses would be consistent
with only a BBB- rating.

Table 3, for the Average quality portfolio, illustrates the qualitative char-
acteristics of the main results. The expected loss under either model is roughly
48 basis points of the portfolio book value. 24 The standard deviation of loss is
roughly 32 basis points. When the CreditRisk� parameter r is set to 1, the two
models predict roughly similar loss distributions overall. The 99.5th and
99.97th percentile values are roughly 1.8% and 2.7% of portfolio book value in
each case. As r increases, however, the CreditRisk� distribution becomes in-
creasingly kurtotic. The standard deviation of loss remains the same, but tail
percentile values increase substantially. The 99.5th and 99.97th CreditRisk�

percentile values given r � 4:0 are respectively 40% and 90% larger than the
corresponding CreditMetrics values.

High, Low, and Very Low quality portfolios produce di�erent expected
losses (19, 93, and 111 basis points, respectively), but similar overall conclu-
sions regarding our comparison of the two models. CreditRisk� with r � 1:0
produces distributions roughly similar to those of CreditMetrics, although as
credit quality deteriorates the extreme percentile values in CreditRisk� increase
more quickly than in CreditMetrics. As r increases, so do the extreme loss
percentiles.

Overall, capital requirements implied by these simulations may seem
relatively low. Even with a Low quality portfolio, a bank would need to
hold only 4.5±6% capital against credit risk in order to maintain an AA

23 This is a rule of thumb often used by practioners. Following the CreditMetrics Technical

Document, we have taken a slightly lower value (0.02%) as the AA default probability.
24 For this credit quality distribution, the expected annual default rate is 1.6% (by loan value).

Multiply by the average severity of 30% to get a loss of 48 basis points.

M.B. Gordy / Journal of Banking & Finance 24 (2000) 119±149 137



rating standard. 25 It should be noted, however, that these simulations
assume uniform default correlations within each rating grade. In real world
portfolios, there may sometimes be pockets of higher default correlation, due
perhaps to imperfect geographic or industry diversi®cation. Furthermore, it
should be emphasized that these simulations incorporate only default risk,
and thus additional capital must be held for other forms of risk, including
market risk, operational risk, and recovery uncertainty.

Table 3

CreditMetrics vs CreditRisk�: Main simulations

r High quality portfolio Average quality portfolio

CM2S CR� CM2S CR�

1.00 1.50 4.00 1.00 1.50 4.00

Mean 0.194 0.194 0.194 0.194 0.481 0.480 0.480 0.480

Std Dev 0.152 0.156 0.156 0.156 0.319 0.325 0.325 0.325

Skewness 1.959 1.874 2.537 5.848 1.696 1.854 2.633 6.527

Kurtosis 9.743 8.432 13.531 65.004 8.137 8.374 14.220 75.694

0.5000 0.156 0.150 0.148 0.160 0.409 0.391 0.384 0.414

0.7500 0.257 0.257 0.240 0.222 0.624 0.612 0.567 0.520

0.9500 0.486 0.501 0.497 0.398 1.089 1.120 1.116 0.869

0.9900 0.733 0.745 0.794 0.858 1.578 1.628 1.749 1.916

0.9950 0.847 0.850 0.928 1.121 1.795 1.847 2.033 2.488

0.9997 1.342 1.277 1.490 2.345 2.714 2.736 3.225 5.149

r Low quality portfolio Very Low quality portfolio

CM2S CR+ CM2S CR+

1.00 1.50 4.00 1.00 1.50 4.00

Mean 0.927 0.927 0.927 0.927 1.107 1.106 1.106 1.106

Std Dev 0.557 0.566 0.566 0.566 0.635 0.644 0.644 0.644

Skewness 1.486 1.883 2.734 6.990 1.393 1.885 2.747 7.060

Kurtosis 6.771 8.511 14.873 82.988 6.299 8.523 14.961 84.097

0.5000 0.809 0.769 0.753 0.815 0.977 0.926 0.906 0.979

0.7500 1.194 1.154 1.063 0.967 1.418 1.364 1.259 1.146

0.9500 1.989 2.045 2.041 1.585 2.316 2.379 2.376 1.854

0.9900 2.782 2.936 3.161 3.481 3.187 3.395 3.654 4.024

0.9950 3.124 3.320 3.664 4.504 3.562 3.832 4.227 5.192

0.9997 4.558 4.877 5.770 9.251 5.105 5.607 6.631 10.618

25 Simulations by Carey (1998) suggest somewhat higher capital requirements. His simulations

account for recovery risk, which is assumed away here. Perhaps more importantly, his simulations are

calibrated using data from 1986 to 1992, which was a relatively unfavorable period in the credit cycle.
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5. Robustness of model results

In this section, we explore the sensitivity of the models to parameter cali-
bration and portfolio construction.

Obligor count: Compared to portfolios of equities, loan portfolios can be
quite large and still receive substantial diversi®cation bene®ts from adding
more obligors. 26 Table 4 compares CreditMetrics and CreditRisk� results for
Average quality portfolios of 1000, 5000, and 10,000 obligors. Even with
portfolios of this size, increasing the number of obligors reduces risk signi®-
cantly. The standard deviation of the 10,000 obligor portfolio is roughly 20%
less than that of the 1000 obligor portfolio, and the 99.5th and 99.97th per-
centile values fall by 13±15%. However, the qualitative nature of the results,
particularly the comparison between the two models, remains unchanged.

Loan size distribution: The loan size distributions derived from the SoA data
are likely to be somewhat skew in comparison with real bank portfolios. For
N� 5000, the largest loans are over 0.65% of the portfolio, which is not much
below supervisory concentration limits. To examine the e�ect of loan size
distribution, we construct portfolios in which all loans within a single rating
grade have the same size. Results are shown in Table 5 for Average quality
portfolios. The tail percentiles are somewhat lower for the equal-sized port-
folios, but, if one considers the magnitude of di�erence between the two loan-
size distributions, the di�erence in model outputs seems minor. These results
suggest that, with real bank portfolios, neither model is especially sensitive to
the distribution of loan sizes.

Normalized volatilities: Due to the empirical di�culty of estimating default
correlations with precision, practioners may be especially concerned with the
sensitivity of the results to the values of the normalized volatilities in Table 2.
Therefore, we calibrate and run a set of simulations in which normalized
volatilities are double the values used above. CreditMetrics weights wf increase
substantially, though not quite proportionately. 27 We retain the same Cred-
itRisk� wf values given in the last three columns of Table 2, but double the
respective r values.

Results are presented in Table 6 for the Average quality portfolio. As should
be expected, extreme tail percentile values increase substantially. Compared to
the values in Table 3, the 99.97th percentile values nearly triple. Similar increases
in tail percentile values are observed for the other credit quality distributions.

26 Essentially, this is because risk in loans is dominated by large changes in value which occur

with relatively low probability. The skew distribution of individual losses allow the tail of the

portfolio loss distribution to thin with diversi®cation at only a relatively slow rate.
27 Due to the nonlinearity of the normal cdf, a given percentage increase in the normalized

volatility is generally associated with a somewhat smaller percentage increase in the weight on x.

M.B. Gordy / Journal of Banking & Finance 24 (2000) 119±149 139



Discretization of loan sizes: In the main simulations, the CreditRisk� base
exposure unit is set to k times the ®fth percentile value of the distribution of loan
sizes. At least locally, the error introduced by this discretization is negligible. We
have run most of our simulations with m0 set to k times the 2.5th and 10th per-
centile values. For both these alternatives, the percentile values of the loss dis-
tribution di�ered from those of the main simulations by no more than 0.0005.

6. Modi®ed CreditRisk� speci®cations

The analysis of Section 4.3 demonstrates the sensitivity of CreditRisk� to
the calibration of r. When we vary r while holding the wfr constant, the

Table 4

E�ect of obligor count on portfolio loss distributionsa

N� 1000 N� 5000 N� 10,000

CM2S CR� CM2S CR� CM2S CR�

Mean 0.480 0.480 0.481 0.480 0.480 0.480

Std Dev 0.387 0.398 0.319 0.325 0.306 0.312

Skewness 1.672 2.245 1.696 2.633 1.734 2.788

Kurtosis 7.442 11.434 8.137 14.220 8.390 15.202

0.5000 0.383 0.370 0.409 0.384 0.410 0.380

0.7500 0.653 0.619 0.624 0.567 0.615 0.552

0.9500 1.235 1.251 1.089 1.116 1.064 1.097

0.9900 1.803 1.957 1.578 1.749 1.531 1.719

0.9950 2.044 2.278 1.795 2.033 1.750 1.999

0.9997 3.093 3.626 2.714 3.225 2.653 3.169

a Average quality portfolio with SoA loan size distributions. All CreditRisk� simulations use

r � 1:5.

Table 5

Equal-sized vs SoA loan sizesa

SoA loan sizes Equal-sized loans

CM2S CR� CM2S CR�

Mean 0.481 0.480 0.481 0.480

Std Dev 0.319 0.325 0.299 0.303

Skewness 1.696 2.633 1.801 2.924

Kurtosis 8.137 14.220 8.712 16.047

0.5000 0.409 0.384 0.412 0.373

0.7500 0.624 0.567 0.609 0.549

0.9500 1.089 1.116 1.051 1.101

0.9900 1.578 1.749 1.527 1.728

0.9950 1.795 2.033 1.747 2.009

0.9997 2.714 3.225 2.649 3.187

a Average quality portfolio of N� 5000 obligors. CreditRisk� simulations use r � 1:5.
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mean and standard deviation of loss remain unchanged, but the tail per-
centile values change markedly. This sensitivity is both a direct and an in-
direct consequence of a property of the gamma distribution for x. Unlike
the normal distribution, which has kurtosis equal to 3 regardless of its
variance, the kurtosis of a gamma-distributed variable depends on its pa-
rameters. A gamma random variable with mean one and variance r2 has
kurtosis 3�1� 2r2�, so higher r imposes a more fat-tailed shape on the
distribution, which is transmitted to the shape of the distribution for pi�x�
for each obligor i. So long as wf�i�r is held constant, varying r has no e�ect
on the mean or standard deviation of pi�x�. However, it is straightforward
to show that the kurtosis of pi�x� equals the kurtosis of x, so increasing r
increases the kurtosis of pi�x�.

Increasing the kurtosis of the pi�x� has the direct e�ect of increasing the
thickness of the tail of the distribution for loss. This is explored below by
substituting an alternative distribution for x which has mean one and
variance r2 but is less kurtotic. The indirect e�ect of higher kurtosis for
pi�x� is that it magni®es the error induced by the Poisson approximation. To
explore the e�ect of r on the size of the approximation error, we use the
methods of Section 3.2 to eliminate the Poisson approximation from the
calculations.

The Poisson approximation necessarily contributes to the thickness of the
tail in CreditRisk� loss distributions. In a Monte Carlo based model, such as
CreditMetrics, an obligor can default no more than once, so no more than N
defaults can be su�ered. Under the Poisson approximation, a single obligor can
be counted in default any number of times (albeit with very small probabilities
of multiple defaults). Thus, CreditRisk� assigns a positive probability to the
number of defaults exceeding the number of obligors. No matter how the
portfolio is constructed and how the two models are calibrated, there must be a

Table 6

E�ect of increased default volatilitiesa

r CM2S CR�

2.00 3.00 8.00

Mean 0.480 0.480 0.480 0.480

Std Dev 0.590 0.611 0.611 0.611

Skewness 3.221 3.903 5.774 15.131

Kurtosis 20.278 26.209 54.267 359.274

0.5000 0.287 0.265 0.313 0.400

0.7500 0.615 0.507 0.447 0.492

0.9500 1.597 1.648 1.442 0.710

0.9900 2.845 3.130 3.311 2.533

0.9950 3.467 3.818 4.239 4.202

0.9997 6.204 6.772 8.386 13.459

a Average quality portfolio with SoA loan size distributions. N� 5000 obligors.
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crossing point beyond which CreditRisk� percentile values all exceed the
corresponding CreditMetrics percentile values.

Depending on the portfolio and the model parameters, the e�ect of the
Poisson approximation may or may not be negligible. To test the empirical
relevance of this e�ect, we compare CreditRisk� results against those of a
Monte Carlo version of CreditRisk�. The Monte Carlo version is similar to
that outlined in Section 3.2, except that default of obligor i, conditional on
x, is drawn as a Bernoulli random variate with probability pi�x�, rather than
using the latent variable approach of Eq. (13). This avoids the small ap-
proximation error induced by Eq. (14), but otherwise imposes exactly the
same distributional assumptions and functional forms as the standard
CreditRisk� model.

We conduct similar Monte Carlo exercises to explore alternative distribu-
tional assumptions for x. Say that x is distributed such that x2 � Gamma�a; b�.
As described in Appendix D, it is straightforward to solve for parameters �a; b�
such that the E�x� � 1 and Var�x� � r2. Although this x matches the mean and
variance of the standard CreditRisk� gamma-distributed risk factor, it is much
less kurtotic. The ``gamma-squared'' distribution is compared to the ordinary
gamma distribution in Fig. 2. The top panel plots the cdfs for a gamma dis-
tributed variable (solid line) and a gamma-squared distributed variable (dashed
line). Both variables have mean one and variance one. The two distributions
appear to be quite similar, and indeed would be di�cult to distinguish em-
pirically. Nonetheless, as shown in the bottom panel, the two distributions
di�er substantially in the tails. The 99.9th percentiles are 6.91 and 5.58 for the
gamma and gamma-squared distributions, respectively. The 99.97th percentiles
are 8.11 vs. 6.20.

The results of both exercises on an Average quality portfolio are shown in
Table 7. 28 The standard CreditRisk� results for r � 1:5 and r � 4:0 (columns
1 and 4) are taken from Table 3. Results for the Monte Carlo version of
CreditRisk� are shown in columns 2 and 5. For the moderate value of r � 1:5,
the 99.97th percentile value is reduced by under two percent. For the larger
value r � 4:0, however, the 99.97th percentile value is reduced by over eight
percent. The higher the value of r, the higher the probability of large condi-
tional default probabilities. As the validity of the Poisson approximation thus
breaks down for high r, so does the accuracy of the analytic CreditRisk�

methodology.
Results for the modi®ed CreditRisk� with x2 gamma-distributed are shown

in columns 3 and 6. For both values of r, the mean and standard deviation of
portfolio loss are roughly as before, but the tail percentiles are quite signi®-

28 Qualitatively similar results are found for portfolios based on the other credit quality

distributions.
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cantly reduced. Indeed, the 99.97th percentile value for the modi®ed model
under r � 1:5 is even less than the corresponding CreditMetrics value. This
demonstrates the critical importance of the shape of the distribution of the
systemic risk factor.

7. Discussion

This paper demonstrates that there is no unbridgeable di�erence in the views
of portfolio credit risk embodied in CreditMetrics and CreditRisk�. If we
consider the restricted form of CreditMetrics used in the analysis, then each
model can be mapped into the mathematical framework of the other, so that

Fig. 2. Gamma and gamma-squared distributions.

Note: The two lines are cdfs of variables with mean one and variance one. If x is gamma distributed,

the solid line is its cdf. If x2 is gamma distributed, the dashed line is its cdf.
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the primary sources of discrepancy in results are di�erences in distributional
assumptions and functional forms.

Simulations are constructed for a wide range of plausible loan portfolios
and correlation parameters. The results suggest a number of general conclu-
sions. First, the two models perform very similarly on an average quality
commercial loan portfolio when the CreditRisk� volatility parameter r is given
a low value. Both models demand higher capital on lower quality portfolios,
but CreditRisk� is somewhat more sensitive to credit quality than the two-state
version of CreditMetrics. It should be emphasized, however, that the full im-
plementation of CreditMetrics encompasses a broader notion of credit risk,
and is likely to produce somewhat larger tail percentiles than our restricted
version.

Second, results do not depend very strongly on the distribution of loan sizes
within the portfolio, at least within the range of size concentration normally
observed in bank portfolios. The discretization of loan sizes in CreditRisk� has
negligible impact.

Third, both models are highly sensitive to the volatility of default proba-
bilities, or, equivalently, to the average default correlations in the portfolio.
When the standard deviation of the default probabilities is doubled, required
capital increases by two to three times.

Finally, the models are highly sensitive to the shape of the implied distri-
bution for the systemic risk factors. CreditMetrics, which implies a relatively
thin-tailed distribution, reports relatively low tail percentile values for portfolio
loss. The tail of CreditRisk� depends strongly on the parameter r, which de-

Table 7

Modi®ed CreditRisk� modelsa;b

r � 1:50 r � 4:00

CR� CR�(MC) CR�(X2) CR� CR�(MC) CR�(X2)

Mean 0.480 0.479 0.480 0.480 0.480 0.479

Std Dev 0.325 0.319 0.322 0.325 0.316 0.321

Skewness 2.633 2.606 2.037 6.527 6.070 5.142

Kurtosis 14.220 13.938 8.342 75.694 62.525 40.076

0.5000 0.384 0.385 0.374 0.414 0.416 0.411

0.7500 0.567 0.564 0.575 0.520 0.518 0.512

0.9500 1.116 1.106 1.158 0.869 0.866 0.888

0.9900 1.749 1.719 1.670 1.916 1.904 2.047

0.9950 2.033 1.991 1.868 2.488 2.494 2.553

0.9997 3.225 3.179 2.561 5.149 4.729 4.099

a Average quality portfolio with SoA loan size distribution. N� 5000 obligors. 200,000 portfolio

trials in the Monte Carlo simulations.
b CR�(columns 1 and 4) is standard CreditRisk�. CR�(MC) (columns 2 and 5) is CreditRisk�

estimated by Monte Carlo. CR�(X2) (columns 3 and 6) is a Monte Carlo CreditRisk� with x2

gamma-distributed.
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termines the kurtosis (but not the mean or variance) of the distribution of
portfolio loss. Choosing less kurtotic alternatives to the gamma distribution
used in CreditRisk� sharply reduces its tail percentile values for loss without
a�ecting the mean and variance.

This sensitivity ought to be of primary concern to practitioners. It is di�cult
enough to measure expected default probabilities and their volatility. Capital
decisions, however, depend on extreme tail percentile values of the loss dis-
tribution, which in turn depend on higher moments of the distribution of the
systemic risk factors. These higher moments cannot be estimated with any
precision given available data. Thus, the models are more likely to provide
reliable measures for comparing the relative levels of risk in two portfolios than
to establish authoritatively absolute levels of capital required for any given
portfolio.
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Appendix A. Properties of the gamma distribution

The gamma distribution is a two parameter distribution commonly used in
time-to-failure and other engineering applications. If x is distributed Gam-
ma�a; b�, the probability density function of x is given by

f �xja; b� � xaÿ1 exp�ÿx=b�
baC�a� ; �A:1�

where C�a� is the Gamma function. 29 The mean and variance of x are given by
ab and ab2, respectively. Therefore, if we impose E�x� � 1 and V �x� � r2, then
we must have a � 1=r2 and b � r2.

29 Other parameterizations of this distribution are sometimes seen in the literature. This is the

parameterization used by CSFP (1997, Eq. 50).
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Appendix B. Estimating the volatility of default probabilities

This appendix demonstrates a simple non-parametric method of estimating
the volatility of default probabilities from historical performance data pub-
lished by Standard & Poor's (Brand and Bahar, 1998, Table 12). Let pf�xt�
denote the probability of default of a grade f obligor, conditional on the re-
alized value xt of a systemic risk factor. We need to estimate the unconditional
variance V �pf�x��. We assume that the xt are serially independent and that
obligor defaults are independent conditional on xt. Both CreditMetrics and
CreditRisk� satisfy this framework, though the two models impose di�erent
distributional assumptions for x and functional forms for p�x�.

For each year in 1981±97 and for each rating grade, S&P reports the number
of corporate obligors in its ratings universe on January 1, and the number of
obligors who have defaulted by the end of the calendar year. Let d̂ft be the
number of grade f defaults during year t, and let n̂ft denote the number of
grade f obligors at the start of year t. Let p̂ft denote the observed default
frequency d̂ft=n̂ft. We assume that the size of the universe n̂ft is independent of
the realization of xt.

The general rule for conditional variance is

V �y� � E�V �yjz�� � V �E�yjz��: �B:1�
Applied to the problem at hand, we have

V �p̂f� � E�V �p̂fjx; n̂f�� � V �E�p̂fjx; n̂f��: �B:2�
Obligor defaults are independent conditional on x, so d̂ft �Binomial(n̂ft; pf�xt�).
The expectation of the conditional variance of p̂ft is therefore given by

E�V �p̂fjx; n̂f�� � E�V �d̂fjx; n̂f�=n̂2
f � � E�pf�x��1ÿ pf�x��=n̂f�

� E�1=n̂f��E�pf�x�� ÿ �V �pf�x�� � E�pf�x��2��
� E�1=n̂f���pf�1ÿ �pf� ÿ V �pf�x���;

�B:3�

where the second equality follows from the formula for the variance of a bi-
nomial random variable, the third equality follows from the mutual indepen-
dence of x and n̂f and the rule V �y� � E�y2� ÿ E�y�2; and the ®nal equality from
E�pf�x�� � �pf.

Since E�p̂fjx; n̂f� � pf�x�, the last term in Eq. (B.2) is simply V �pf�x��. Sub-
stitute these simpli®ed expressions into Eq. (B.2) and rearrange to obtain

V �pf�x�� �
V �p̂f� ÿ E�1=n̂f��pf�1ÿ �pf�

1ÿ E�1=n̂f� : �B:4�

The values of �pf observed in the S&P data di�er slightly from the values used
for calibration in Section 4.2. It is most convenient, therefore, to normalize the
estimated default rate volatilities as ratios of the standard deviation of pf�x� to
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its expected value,
����������������
V �pf�x��

p
=�pf. In the ®rst two columns of Table 8, we

present for each rating grade the empirical values of �p and E�1=n̂� in the S&P
data. The third column presents the observed variance of default rates, V̂ �p̂�,
expressed in normalized form. The fourth column gives the implied normalized
volatilities for the unobserved true conditional default probabilities.

For the highest grades, AAA and AA, no defaults occurred in the S&P
sample, so it is impossible to estimate a volatility for these grades. Among
the A obligors, only ®ve defaults were observed in the sample, so the default
volatility is undoubtedly measured with considerable imprecision. Therefore,
calibration of the normalized volatilities for these grades requires some
judgment. Our chosen values for these ratios are given in the ®nal column
of Table 8. It is assumed that normalized volatilities are somewhat higher
for the top grades, but that the estimated value for grade A is implausibly
high. For the lower grades, the empirical estimates are made with greater
precision (due to the larger number of defaults in sample), so these values
are maintained.

Appendix C. Proof of Proposition 1

Let y1 and y2 be the CreditMetrics latent variables for two grade f obligors.
Assume that there is only one systemic risk factor and that the two obligors
have the same weight wf on that risk factor. Thus,

yi � xwf �
��������������
1ÿ w2

f

q
�i for i 2 f1; 2g: �C:1�

Conditional on x, default events for these obligors are independent, so

Pr�y1 < Cf & y2 < Cfjx� � Pr�y1 < Cfjx�Pr�y2 < Cfjx�

� U �Cf

�
ÿ xwf�=

��������������
1ÿ w2

f

q �2

� pf�x�2:
�C:2�

Table 8

Empirical default frequency and volatility

�pf E�1=n̂f�
�����������
V̂ �p̂f�

q
=�pf

����������������
V̂ �pf�x��

q
=�pf

�����
Vf
p

=�pf

AAA 0 0.0092 ± ± 1.4

AA 0 0.0030 ± ± 1.4

A 0.0005 0.0017 2.4857 1.5896 1.2

BBB 0.0018 0.0026 1.2477 0.3427 0.4

BB 0.0091 0.0038 1.2820 1.1108 1.1

B 0.0474 0.0041 0.6184 0.5492 0.55

CCC 0.1890 0.0360 0.5519 0.3945 0.4
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Therefore,

Var�pf�x�� � E�pf�x�2� ÿ E�pf�x��2

� E�Pr�y1 < Cf & y2 < Cfjx�� ÿ �p2
f : �C:3�

Since y1 and y2 each have mean zero and variance one, and have correlation w2
f ,

the unconditional expectation E�Pr�y1 < Cf & y2 < Cfjx�� is given by
U�Cf;Cf;w2

f�. This gives

Var�pf�x�� � U�Cf;Cf;w2
f� ÿ �p2

f ; �C:4�
as required.

Appendix D. Distribution of an exponentiated gamma random variable

Assume that x is distributed such that x1=r � Gamma�a;b� for some given
r > 0. We wish to solve for parameters �a; b� such that E�x� � 1 and
Var �x� � r2.

It is straight forward to show that the moments of x are given by

E�xk� � C�a� rk�
C�a� brk: �D:1�

Therefore,

E�x� � C�a� r�
C�a� br � 1 ) b � C�a�

C�a� r�
� �1=r

: �D:2�

To solve for a, use the variance restriction

Var�x� � E�x2� ÿ E�x�2 � r2 �D:3�
which implies

r2 � 1 � E�x2� � C�a� 2r�
C�a� b2r

� C�a� 2r�
C�a�

C�a�
C�a� r�

� �2

� C�a� 2r�C�a�
C�a� r�2 : �D:4�

For any r > 0, there exists a unique solution to this equation for a. To see this,
de®ne gr�a� as the right-hand side of Eq. (D.4). The gamma function is con-
tinuous for non-negative arguments, so gr�a� is continuous as well. Note that
C�0� � 1, so lima!0gr�a� � 1 for r > 0. Using Stirling's formula for C�z� as
z!1 (Abramowitz and Stegun, 1968, 6.1.37), it is straightforward to show
that lima!1gr�a� � 1. Therefore, by the Intermediate Value Theorem, there
exists a unique solution to gr�a� � 1� r2.
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